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Synopsis
A theoretical study is made of damage effects by particle radiations in matter, and their 

dependence on energy, mass and charge number of an incoming particle, as well as on the com
position of the medium. Typical examples of damage effects are the number of ion pairs formed 
in a gas, or the number of vacancies created in a crystal. We are particularly concerned with the 
consequences of the competition between energy transfer to atomic electrons and to translatory 
motion of an atom as a whole. For these purposes, common integral equations are formulated 
and studied. We treat primarily average effects resulting from an atomic particle with given 
energy, but also their average fluctuation and probability distribution.

As an important example we study the division of the total energy dissipation, E, into 
energy given to recoiling atoms, v, and energy given to electrons, E-v. Several radiation effects 
are accounted for from knowledge about E and v.

The primary quantities in a study of radiation effects are the cross sections for all relevant 
collision processes. We use comprehensive estimates of cross sections, derived elsewhere in a 
Thomas-Fermi treatment. Various simple approximations are introduced; analytical and numer
ical estimates are made of solutions to the integral equations. For many purposes nuclear colli
sions and electronic collisions may be treated as if they were unconnected events, although this 
is not quite correct, especially at low energies. Considerable simplification is obtained by a suit
able scaling of energy. A key to a common experimental and theoretical study is provided by 
an incoming particle identical with the atoms of the substance. Only few experiments can at 
present be compared quantitatively with theory.

Printed in Denmark 
Bianco Lunos Bogtrykkeri A/S



§ 1. Introduction

When an atomic particle is slowed down in a substance, a wide variety 
of damage effects may be observed. Familiar phenomena of this kind are 
the number of ion pairs formed in a gas, the number of electron-hole pairs 
in a semiconductor, or the number of defects in a solid. Other damage 
effects have been studied less, or not at all, like the number of electrons 
ejected from atomic A-shells, or the number of dissociations of molecules. 
The observations of damage phenomena may be divided into two classes. 
The one is particle detection, where the effect of a single incoming particle 
is observed and possibly recorded in time, and the other is the total damage 
due to many particles, as in reactor materials.

All damage effects depend on a competition between the cross sections 
for a multitude of different processes. Theoretical studies have been made 
by many authors concerning some aspects of excitation and ejection of 
electrons. Other theoretical studies have been concerned with the average 
energy required to form defects in solids. Less attention has been paid to 
the question of the competition between, on the one hand, energy transfer 
to atomic electrons and, on the other hand, energy transfer to translatory 
motion of an atom as a whole. Our knowledge of collision processes for 
slow heavy particles has been scanty, and the mentioned competition does 
in fact occur primarily for slow heavy particles.

To a wide extent all above damage processes may be described by 
integral equations which are formally equivalent. The differences concern 
mostly the inhomogeneous parts or boundary conditions. But the competi
tion between energy transfer to electrons and to atomic recoils can be de
scribed by equations which have even more in common. This is because 
there are extensive similarity properties, of Thomas-Fermi type, between 
the competing processes in this case. The homogeneous integral equations 
in different substances are actually quite closely connected. It can therefore 
be worthwhile to study them in some detail. When we have gained insight 
in the equations we can handle not only average damage effects, but also 
fluctuations and even the distribution in probability.

1*
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We shall he concerned mainly with one effect which corresponds to the 
simplest homogeneous equations. This effect is the division of the dissipated 
energy between electrons and recoiling atoms in the substance. More pre
cisely, for an incoming particle of energy E we ask for that part 7/ of the 
total energy loss, E, which is ultimately given to electrons, and that part v, 
which is ultimately left in atomic motion. Since this division is a useful 
and simple concept, we comment on it in some detail as an example of the 
application of the general equations.

It might seem as if the division into 7; and v were not quite well-defined, 
since we are not concerned with the final thermal equilibrium. However, 
on the one hand, the energy once given to electrons can be transferred 
back to atomic motion only extremely slowly and in exceedingly small 
bits. 5’ On the other hand, sufficiently slow atoms no longer excite electrons 
and their energy may be frozen in or become thermalized. This may give 
a qualitative justification of the separation into v and 7/.

For the present purpose the quantities 7; and v may be specified as fol
lows. We consider 77 as the sum total of the energy given to electrons, i. e. 
for ejected electrons it is the kinetic energy plus the original binding while 
for excited electrons it is the excitation energy. Correspondingly, v is the 
total energy given to atoms, excluding internal excitation of atoms. Thus, 7/ 
and v are quite well-defined, and have the sum rj + v = E .**  It is clear that 
there must be a probability distribution P(y, E}dv in the variable v, such 
that éoo #oo

\ P(y, E)dv = 1 , v(£) = \vP(v,E)dv,
• 0 ^0

and similarly for the higher moments. For the present we may disregard 
fluctuations and consider only e.g. v = v(E).

We shall attempt to show how Tj(E), v(E) and other cumulative effects 
may be derived for all kinds of particles in any medium. Since vj and v 
are determined by the competition between energy transfer to electrons and 
to atomic recoils in all collisions during slowing-down, they are expected 
to depend on the medium, on the type of particle and on its energy. This 
enormous variability can be reduced somewhat by studying at first the more 
basic cases.

* An exception occurs if an electron by exciting atomic electrons gives rise to large vibra
tions or even disruption of bindings in molecules (through a Franck-Condon effect or an Auger 
effect). The energy transferred in this way from a moving electron into atomic motion can be 
appreciable. This effect must be studied separately, and is remarkable in that it does not occur 
in monatomic gases. - The role of the Auger effect is studied by Durup and Platzman (1961).

♦*  If more subtle distinctions are necessary, we may divide E into components other than 
T] and v. Examples are the energy escaping as X-rays or as near-thermal excitations.
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Let us start by considering the case where the medium consists of only 
one atomic species, of atomic number Z2 and mass number A2. Now, any 
incoming particle, irrespective of its type, gives rise to recoiling atoms of the 
medium, and we will have to make use of their value of v and rj. It follows 
that the simplest basic case occurs when the atomic number, Zi, and the 
mass number, Aj, of the incoming particle are equal to those of the medium, 
i. e. Zj = Z2, Aj = A2.

Suppose that a particle belonging to the medium (Zt = Z2) initially has 
an energy E; we want to find vj(E). Collisions with atoms result in recoiling 
atoms or ions which may have any energy E' within the interval Q < E' < E, 
and therefore the corresponding values of rj{E'} enter in the evaluation of 
îj(E}, as must also the differential cross section for energy transfer to re
coiling atoms. Clearly, the procedure must be to build up starting from 
zero energy, and the relative magnitude of the partial stopping cross sections 
Se(E) and Sn(E) must be of direct importance. We shall therefore review 
briefly the behaviour of the relevant cross sections.

When deliberating the approach to these problems, one should first of 
all bear in mind that extreme accuracy and separate computation of each 
individual case cannot be the primary aim. Also, a discussion of quite low 
energies of heavy particles, less than 100 eV say, is either unnecessary or 
may be made separately. It is therefore desirable to use statistical methods, 
of type of the Thomas-Fermi treatment, as far as possible. Since at moderate 
energies the interpenetration of two atomic electron clouds can be consider
able, many atomic electrons with moderate bindings play a part, and sta
tistical methods seem promising. In the case Zt = Z2, Ax = A2 the function 
rj can depend on three variables, rj = Tj(Z2, A2, E1). It turns out that the 
Thomas-Fermi treatment together with a suitable approximation to scattering 
reduces the number of variables. In fact, beside the energy measured in a 
suitable Thomas-Fermi scale there is only one further parameter, which 
even has approximately the same value in most cases. Such reductions in 
the number of variables lead to highly desirable simplifications in the theo
retical treatment.

We shall already here give a brief summary of relevant stopping cross sections 
and differential cross sections. The cross sections are derived elsewhere (Lindhard 
and Scharff (1961), and Notes on Atomic Collisions I and IV (unpublished)). We 
do not claim that the accuracy is very high, and in individual cases other authors 
may have obtained better estimates. The primary purpose for the present is to have 
available comprehensive formulas, applicable in as many cases as possible. Maybe 
the greatest uncertainty is the proportionality factor, k, in the electronic stopping. 
A considerable number of observations on range and on scattering have been made; 
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they appear to be in fair agreement with the formulas quoted here (Lindhard, 
Scharff and Schiøtt (1962)).

Stopping cross sections.
The nuclear stopping cross section Sn = \Tnd<jn depends on the particle energy 

E, and on the parameters Z1, Z2, Ax and A2. An important region of low velocities 
corresponds to v less than ~ 0.015 c0Z2/3, where Z2/3 = Z2^3 + Z2/3 and v0 = e2//?. 
In this region Sn remains nearly constant, and we shall sometimes approximate Sn 
by the constant standard stopping cross section S„ (similar to that quoted by Bohr 
(1948)),

S°n = (?r2/2.7183)e2a0ZiZ2Mi-Z~W (Mr + M2)~1 . (1.1)

In a more accurate description Sn increases slowly towards a maximum (cf. Fig.l), 
and (1.1) may be used in the neighbourhood of the maximum. Beyond it, Sn decreases 
corresponding to an increasing negative power of E, but always slower than E_1. 
In fact, Sn approaches the classical stopping formula in a screened Coulomb po
tential.

It turns out that the nuclear stopping is most simply described by a suitable 
scaling of energy and cross section. Introduce the dimensionless quantities

a M2
E Z^eZ^+Mz) and Q = RNMzAna?

M1

as measures of energy and range, where a = 0.8853u0 Z“1/3, while R is the usual 
range and N the number of atoms per unit volume. The derivative (de/do) = 
S (Afi +M2)/(4 7ie2aZiZ2Afi) is a dimensionless measure of the stopping cross sec
tion, S. To a good approximation all nuclear stopping cross sections are then 
described by one curve. This is shown in Fig. 1, where the solid curve was computed 
from the comprehensive scattering cross section in Fig. 2. The approximation Sn = 
S°n is represented by the horizontal dotted line (deldg)n = 0.327.

The electronic stopping cross section is nearly proportional to v in a consider
able velocity interval, i.e. for p<fi = Ro- Zi2/3, and is of order of

8 7re2u0 z
V V < Z?1 . (1-2)

This leads to an electronic contribution to stopping in an e-plot (de I dg) = Zc-e1/2, 
where the quantity k as given by (1.2) depends somewhat on Zi, Z2, and M2, 
but is often within the interval 0.10 < k < 0.20. This holds in particular in the case 
of Zi = Z2, Ai = A2, where k = 0.133 Z2/3 A”1/2, so that k varies only little with 
Z2. Merely in the special case of Z2 »Zi, with Zi comparable to 1, does k appreciably 
exceed 0.20. The dashed straight line in Fig. 1 shows the electronic stopping for a 
representative value of k (k = 0.15). It cuts the horizontal line Sn = at an energy 
Ec corresponding to ec = 4.75.

In the neighbourhood of v = iq the electronic stopping has a maximum, upon 
which it decreases and gradually approaches the Bethe stopping formula.

Let us take the ratio = SJSn as a measure of the division of energy 
dissipation into electronic and atomic motion. The above summary of
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Fig. 1. Theoretical stopping cross sections in q—e variables. The abscissa is e1/2, i.e. proportional 
to v. The solid curve is (de/dQ)n computed from the Thomas-Fermi cross section in Fig. 2. The 
horizontal dashed line indicates (1.1) and the dot-and-dash line is the electronic stopping cross 

section, ke1'2, for k = 0.15.

/

—/

_______________

stopping cross sections then shows that there is a natural division into three 
regions of different behaviour. In the lowest energy region, region I, the 
nuclear stopping is dominating and relatively little energy goes into elec
tronic motion. Region I is bounded upwards by an energy roughly equal 
to Ec. Above Ec the nuclear stopping falls off, while the electronic stopping 
goes on increasing as E112. This is region II, with an upper bound given 
by vt, i.e. is of order of 103 or larger. In region II the ratio £ increases 
rapidly, and the fraction of energy going into electronic motion must increase 
correspondingly. Finally, above q the electronic stopping starts decreasing, 
and the ratio £, though still increasing, approaches a maximum value of 
order of 2Mp/m ~ 4000; this is region III. The division into three regions 
is convenient only when Zx = Z2.

Differential cross sections.
Although the stopping cross sections are relevant and give a qualitative picture 

of the events, they contain only part of the necessary information. In fact, in the 
following the integral equations demand a detailed knowledge of the differential 
scattering cross section in nuclear collisions. As regards electronic collisions, we nor
mally need no more than the stopping cross section itself.

We shall briefly recapitulate two different approximations to the differential 
cross section in nuclear collisions, assuming the scattering to be approximately
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elastic (Lindhard and Scharff (1961), and Notes on Atomic Collisions, I). First, 
in an s'th power potential, V (r) = Zi Z2e2u®_1s^1r_s, with as & a = 0.8853 a0 ■ 
Z-1/3, the differential scattering cross section is approximately equal to

rf On
Cn JT

'J'l—l/s J’l + 1/s ’ .s > 1 , (1.3)

where the incoming particle with energy E transfers an energy T to an atom orig
inally at rest. Here, T < 7’m = yE = 4 Mi M2 (Mi + M2)~2E, Tm being the maximum 
energy transfer in the collision. Furthermore, the constant Cn is connected to the 
stopping cross section Sn, and is approximately given by

C n
2ZiZ2e2

Mov2 ’

Mo being the reduced mass. In preliminary discussions these simple formulas are 
quite useful, especially for explorative purposes. The case of s = 2, where Sn = 
is independent of energy, appears to be a fair approximation at energies somewhat 
below Ec. At extremely low energies, s = 3 is preferable. At high energies s tends 
to 1.

A more accurate description is obtained from an interaction potential V (r) = 
(ZiZze2/r) • (f>0(r/a), where tp0(jc) is the Fermi function belonging to a single Thomas- 
Fermi atom. It turns out that the differential cross section is now to a good approxi
mation, for all Zi, Za, Ai, Å2 and all non-relativistic energies, equal to

do = na2~f(t^), (1.4)

d
where I = E2(TITm) = t‘2-sin2-. The variable / is proportional to the energy transfer

7’, and to the energy E through e2ITm. Thus, one universal function of a single vari
able, f (tl/2), describes the scattering at all energies and scattering angles, and for 
all atom-ion pairs. The function f was computed numerically from the Fermi func
tion, and is shown in Fig. 2. At high energies and not too small angles the expression 
(1.4) becomes equal to the Rutherford cross section, where / (,r) = (l/2.r). The equa
tions (1.3) and (1.4) are used in the following in order to get first estimates of radia
tion effects.

Some reservations should be made in connection with the cross section (1.4) 
and the accompanying curve on Fig. 2. First, at high energies e>ei, the curve on 
Fig. 2 is not very accurate at small angles, because the screening of the potential is 
reduced, the ion being stripped of most of its electrons. However, since at these 
energies most of the scattering is Rutherford scattering anyway, no major error is 
committed.

Second, a more interesting correction is due to the circumstance that for large 
angle ion-atom scattering a considerable energy is spent in electron excitation or 
ejection. This was observed by Fedorenko and also by Everhart and co-workers 
(cf. Fedorenko (1959)). The result is that such collisions are not elastic, and that 
there is a correlation between nuclear collisions and electron excitation. Although ap-



Nr. 10 9

AW

Z" pofern '/of

Th ymas - T 'rmi V

X

/ Pu ffieri
■5ca/ter.

'oraf

\
\

\
\ 

\ \
\ 
\
\ \
\ \
\ \ 
\\

fo'*  fo'2 /o"' fo

Fig. 2. Universal differential scattering cross section for elastic collisions, (1.4), based on a 
Thomas-Fermi type potential. At high values of f1/2 it joins smoothly the Rutherford scattering.

The cross section corresponding to power law scattering (1.3) with s = 2 is also shown.

proximate formulas may be quoted for the cross sections of such quasi-elastic col
lisions, the gain in generality hardly outweighs the complications due to the extra 
parameters in the treatment. Since the changes in our final results arc presumably 
small (cf. p. 15), it seems preferable to verify at first the gross features of the simple 
formulas quoted above.

The general considerations in this introduction suggest a definite line of 
approach. It seems natural to develop first a formal theory of average dam
age effects, and to consider basic cases (Z1 = Z2) and possible simplifica
tions, keeping in mind the main characteristics of the above cross sections. 
In this connection, the theory of fluctuations and of probability distributions 
should also be given. We therefore treat these general topics in § 2 and § 3. 
A direct application of the above cross sections to basic cases may then be 
made, first by analytical methods (§ 4) and next by numerical computations 
(§ 5). As an illustration of more complicated cases we consider a few 
examples, which also have bearing on experimental results (§ 6).
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§ 2. The Basic Integral Equation

We shall now formulate and discuss the basic integral equation. The 
discussion, admittedly, is elaborate, but it seems profitable to make clear 
the contents of each assumption or approximation. We consider at first 
damage effects which are additive when due to independent events, so that 
e.g. saturation effects are excluded. The basic equation will be formulated 
in rather general terms, but immediate simplifications must be made when 
we treat solutions of actual cases. We study primarily the case where the 
particle belongs to the medium, and where the medium contains only one 
atomic species. When this case is solved, we may turn to equations for 
more complicated situations. For the present, we consider the simple case 
of average damage effects. Other averages, and the probability distribution 
in damage, will be discussed below.

We are concerned with a particle belonging to the medium, i.e. Z\ = 
Z2 (and A1 = A2). The particle has the energy E. We consider some un
specified physical quantity, <p, such as the number of ion pairs in a gas, 
the number of vacancies in a crystal, the energy given to electrons, etc. 
The quantity is arbitrarily taken to be zero before irradiation. The final 
average value of (f>, after irradiation by a particle of energy E, we call <p(E). 
Although we use this simplified notation, the quantity depends not only 
on E, but also on Z2 (and A2), and to some extent on the physical state of 
the medium. Further, the physical quantity may be changed later by re
combination processes, like in the case of ion pairs, but we shall disregard 
recombination effects and consider only the intermediate stage before re
combination. In practice, recombination may be either avoided or accounted 
for separately. It is important that the physical quantity ?>(E) in question 
is additive, i.e. for each separate slowing-down process all particles set in 
motion contribute additively to <p. This could hold for the three examples 
mentioned above.

The quantity ç?(E) for the particle with energy E we may express in 
another way, if we suppose that the particle moves a path length dR in the 
medium with N atoms per unit volume. There is then a probability NdRdon e 
for a collision specified by energy transfer Tn to the mass centre of the struck 
atom, together with energy transfer 7’ei to electrons (electrons labelled by 
suffix i). The collision reduces the ion energy to the value E-7n-) 7rt,

- - i i.e. the ion will now have a 92-value equal to <p(E- Tn-^Tei). At the same 
i

time the struck atom gets the 99-value <p(Tre-t/), where U is the energy 
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wasted in disrupting the atomic binding. Finally, the electrons produced are 
described by another ^-function, which we denote as (pe, and their contri
bution to y after the collision in question is then ]>/pe (Tei - Ut), where

i 
are the corresponding ionization energies. The above probability times the 
total çkvalue after the collision gives the contribution of this collision to 
^(E). Afterwards we integrate over all collisions. There is left a probability 
1 - NdR \d(Jn e that no collisions occur; in this event the çi-value remains 
^(E).

Collecting the above contributions we may write the original ç>(E) as

ÿ(B) = JVdR-2;Tri) + ÿ - U) + - '’i >} +

+ (1 - NdR^dan^ÿ(E),

which leads to the basic integral equation

+ - 0 (2J)

This equation may be said to state simply that the çkvalue of the particle 
before the collision is equal to the sum of the ip-values of, respectively, the 
particle, the struck atom and the ejected electrons after the collision, aver
aged over the probability of occurrence of the individual processes.

It may be noted that there is no necessity for the total cross section 
\ don e to be finite, and thus we do not attempt to normalize the probability 
of the various events. The actual physical quantities entering are integrals 
of don e times quantities tending to zero as e.g. Tn, or faster. The cross 
sections quoted in § 1 do in fact diverge. Of course, if classical cross sections 
larger than the atomic size become important in the final results, it may not 
be possible to separate into collisions with single atoms.

In equation (2.1) we have tried to avoid unnecessary details of notation. 
Thus, in specifying <p for the incoming particle or for the struck atom we 
might include a dependence on the degree of ionization of the particle in 
question. We shall assume such specifications to be included if necessary, 
but the interpretation of <p(E), if there can be doubt about the state of 
ionization, would normally be that in q> the number of electrons carried by 
the ion is considered to be a function of the ion velocity, and equal to the 
average number of electrons on the ion at the velocity in question.

The solution q> (E) of the equation (2.1) can be found if ye is a known 
function. This is the case if represents e.g. the number of vacancies pro
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diiced in a crystal, since electrons with moderate energies may not be able 
to produce vacancies because of their low momentum, and thus <pe = 0. 
However, in general there is an additional integral equation describing q>e. 
For an electron of energy E the differential cross section is denoted by 
dan e and the collision results in a recoil atom of energy Tn and an energy 
transfer Tei to atomic electrons. In analogy to (2.1) we immediately find

JE7^) 7’n Z7) Tel “ 0 • (‘^)

Together with (2.1) the equation (2.2) leads to a solution for both and 
(f>e. In equation (2.2) we may normally quite neglect the recoil of the 
nucleus; (2.2) then contains only and can be solved separately. An in
coming electron usually gives only a small perturbation of the struck atom, 
and electron excitation may be separated into individual excitations. With 
a differential cross section dae we thus find in all the simplified version 
of (2.2)

JE \(la'e 7’eï)-^(F)+ÿe(7’«- ^i)} = (2.2')
i

Equation (2.1), supplemented by (2.2) if necessary, describes the simplest situa
tion. It may be useful to comment on the set of integral equations belonging to other 
and more complicated cases. We give only a summary treatment, since the generali
zations to be made are fairly obvious.

Firstly, if Zi Z> we denote by yi(E) the average physical effect produced by 
particle 1. The equation for ÿi(E') is obtained in the same way as (2.1)

Tn- u)+JppeCTei- Ut)} = 0, (2.3)

where c/crie is the differential cross section for collisions between particle 1 and 
the atom 2. Evidently, (2.3) requires that the solution of (2.1) is known. In this 
sense, equation (2.3) is secondary to (2.1); this applies also when we wish to com
pare experiments and basic collision theory. It is interesting to notice that (2.3), 
in contrast to (2.1), is not a typical integral equation; if Tn + Tei is small, (2.3) 
becomes a differential equation. i

Secondly, the substance may contain more than one atomic element. Then, 
primary cases are those where the incoming particle is one of the atoms in the 
substance, and the function ÿO')(E) belongs to the case where the incoming particle 
is equal to the /'th atomic species of the substance. In place of (2.1) and (2.2) we now 
write generally

m + 1 f*
\dzSjfc;(E',x)^d)(x) = 0, /c = 1, 2, . . . , 1, (2.4)

;=i J

where m is the number of atomic elements in the substance, and ^d) .... ^(w) are 
the ^-functions of these elements, while 7p(-m+1'> (E) represents <pe(E). The integral 
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operator S*;  is associated with collisions between the /c'th element, of energy E, 
and the /'th element at rest. As an example, we quote the basic case (2.1) and (2.2), 
where m + 1 =2, and e.g. S'21 = $ da'n e ô (x — Tn+ U), according to (2.2).

Let us now return to the basic integral equation (2.1) and discuss the 
approximations which might be made in solving the equation. It is useful 
to classify these approximations; roughly, they may be divided into five 
types.

Discussion of approximations.
The first approximation, (A), was introduced above. It consists in as

suming that the electrons do not produce recoil atoms with appreciable 
energies. This is usually quite correct and implies that q>e may be obtained 
separately, i.e. (2.2) simplifies into (2.2'). (A) is therefore normally fulfilled. 
An interesting exception occurs if the disruption of atomic bindings has 
significant influence on the measured effects (cf. footnote on page 4). A more 
straightforward exception is the case of incoming electrons of energies so 
high (> 1 MeV) that in violent collisions bound atoms can be directly dis
lodged. In the following, approximation (A) is always used.

The second approximation, (B), consists in neglecting the atomic binding 
term U in (2.1) so that ÿ (Tn- U) is replaced by (Tn). Since the bindings 
are of order of some eV, we are normally quite justified in neglecting U, 
for heavy particles at energies where the electronic stopping has any in
fluence at all on the events. Approximation (B) is used everywhere in the 
following, if not directly otherwise stated.

At this stage it may be of interest to mention cases where (B) is invalid. In 
fact, if the binding energies contribute to (2.1) in a significant way, the particle 
energy E is not exceedingly large compared to the binding term U. This implies, 
on the other hand, that the electronic stopping is small and may be neglected. The 
approximation may be called (B_1), and we then obtain the simplified equation

$ d^«{ÿ(B - Tn) -ÿ(E) +ÿ(Tn- U)} = 0, (2.5)

where dan is the differential cross section for elastic ion-atom collisions. This equa
tion is essentially that used by Snyder and Neufeld (1955), and by other authors. 
It should be noted that the binding term U is introduced in a rather symbolic way. 
A thorough study demands a detailed description of the mechanism by which an 
atom in a lattice may be removed from its environment. Thus, beside the energy 
wasted irreversibly, U, when an atom is quickly removed, there is e.g. the threshold 
energy for adiabatic removal of the atom. The generalization of (2.5) to a substance 
containing several different atoms in various binding states should be obvious from 
(2.4). Note also that the approximation (E), introduced below, may be useful in 
studies of (2.5).
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The third approximation, (C), is to assume that the energy transfers 
Tei to electrons are small in a relative measure, or Tei« E- Tn. Like (B) 
this approximation should hold quite well if the particle energy is not too 
low. In fact, we have approximately at high velocities Tei~ E times electron 
mass divided by ion mass. In all, (C) applied to (2.1) leads to

i >

(2-6)

where approximation (B) is also included. Like the two previous approxi
mations, approximation (C) is used generally in the following, exceptions 
being clearly stated.

The fourth approximation, (B), is separation of nuclear and electronic 
collisions. The idea is that only a negligible part of the electronic excitation 
occurs at the small impact parameters where nuclear collisions play a role. 
In point of fact, most of the electronic excitations are associated with large 
impact parameters. It is then natural to disregard the slight overlap of the 
two types of collision effects, and (2.6) becomes

^'(E).Se(B) = ^doJ^pCE-Tn)-cp(E) + (p(Tn)^+ ^dae^(pe(Tei-Ui), (2.7) 

where dan is the differential cross section for elastic nuclear collisions. 
Se(E) = [doe^Tei is the electronic stopping cross section, dae being the 

i
differential cross section for energy transfers Tel, Te2, .... Tei, .... to 
the individual electrons.

Approximation (B), as expressed by (2.7), is also used widely in the 
following. It contains a definite assumption, the justification of which is less 
apparent and less justified than the previous assumptions. In (2.7) we have 
disregarded the connection between electronic and nuclear collisions; they 
are even supposed to be separable. From a series development in (2.6) we 
find that the term neglected on the right hand side of (2.7) is approximately 

it is of interest to investigate the justification of 
i

(2.7) using such correction terms.
In making approximation (B) we include approximation (C). This is 

reasonable since it implies only that ÿ (£) - ÿ ( £ - = ÿ'(£)X 7^- The
\ i ' I
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ETel 
i 

left hand side of (2.7), but is presumably not large.
Finally, the fifth approximation, (E), is to assume that also Tn is small 

compared to the energy E. Since the maximum energy transfer is normally 
quite large, and even equal to E if Ax = A2, it might seem that this approx
imation is poor. However, because the cross sections are strongly forward 
peaked, the approximation remains fairly good, as we shall see in § 4. Ap
proximation (E), together with the previous simplifications, leads to

on thecorrection for this approximation is therefore \<p" (E)^don e

V'(E){Se(E) + S„(E)} - ^da^T^ + ^da.Z^T^-U,-), (2.8) 

where Sn(E) = J danTn, and where the quantity neglected, as compared 
to (2.7), is approximately (1/2) <?"(E) • J donT^ on the right hand side of
(2.8).  The approximation (E) may be regarded as an expedient to get an 
approximate solution of (E), i.e. (2.7).

An interesting consequence of approximation (E) may be noticed. Thus, 
if we disregard (E), and use only (E), i.e. Tn and Tei are small, we obtain 

i
again equ. (2.8), but now Sn = J d(Jn e Tn, Se = \ dan e£ T*.  Further, the 

i
cross sections on the right of (2.8) should be dan e. The separation in (2.8) 
is therefore obtained independently of the separability of nuclear and elec
tronic collisions assumed in (E). Conversely, it can be difficult to relate 
the integral equations for to the degree of correlation between electronic 
and nuclear collisions, as referred to in § 1, p. 9. In Fig. 6, the good agree
ment between approximations (E) and (E) indicates that correlation cor
rections to r(E) can not be large.

We shall sometimes use an approximation, (E'), which is much closer 
to (E) than (E) itself

~ j ?"(£)rn(E) + ÿ-(£){S„(E) + Sn(E)}- 
(2.8')

where E„(E) = J danT*.
When (pe is determined by an equation like (2.2') it only enters as a 

known source term in the basic integral equation (2.1). Clearly, the primary 
problem is then to find the complete solution of the homogeneous basic 
equation, i.e. omitting the <pe-term, in one of its formulations within the 
approximations (A) to (E).
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It would be vain to ask for a detailed knowledge of done, let alone 
solve the equation (2.1) on this basis. However, from equations (2.7) and
(2.8) it is seen that knowledge of the stopping cross sections Se and Sn as 
functions of energy is essential to the solution of the basic integral equation. 
Apart from this, some knowledge of dan as a function of Tn is clearly re
quired. This is seen in all versions of the basic integral equation, where the 
term ^d<rrø^(7’n) always enters.

It need hardly be added that in the following we introduce approxima
tions other than those listed above. Most of the approximations are con
nected with Thomas-Fermi-like properties or with the specific behaviour of 
the cross sections summarized in § 1. An example of general interest is the 
attempt to formulate asymptotic equations in the high energy limit, cf. (5.3) 
and (5.4).

§ 3. Fluctuations and Probability Distribution

Fluctuations.
So far, we have considered the average, tp(E), of an additive physical 

quantity, çp. However, it is of interest to discuss also other averages, for 
instance the average of the square of the physical quantity. In general, we 
might consider <<^(£) >, by which is meant the average over all events 
of the ni’th power of (p, so that < ^(E) >=<p(E). The equation governing 
<99m(E) > is obtained in a similar way as (2.1), and we find in analogy 
to (2.1)

In principle, (3.1) may be used to construct the average of any function 
f ((p), e.g. by means of a power series development in <p. In practice, how
ever, it is preferable to study instead the equation for the probability dis
tribution in (p, P((p, E). A brief discussion of the probability distribution is 
given below.

How ever this may be, it is always of considerable interest to treat the 
case of zu = 2 in (3.1). This case indicates how equations of type of (3.1) 
may be solved, and gives at the same time the average square fluctuation in <p. 
We therefore put m = 2 in (3.1) and average over independent quantities 
like e.g. the product < <p(E - Tn-Y rrei)(p(TJ > = q>(E - Tn-, 

i i 
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where we average over the subsequent fate of two atoms of given energies, 
E—Tei and Tn- We 8et thus

i

- ' » “2 - ß|(£) + -4< 7’»> + 2 ß2ve( Ta - to} -
<• , r / ‘ > ‘12 ! } <32>

- yan,e^E-Tn-zî’«)+ÿ(r„)+2%(î;<--?2(£) •

Mat.Fys.Medd.Dan.Vid.Selsk. 33, no. 10.

where we have introduced the average square straggling f?2(E) = < ^(E) > 
-^2(E), and £|e(E) = -ÿ2e(E).

The right hand side of (3.2) may be reformulated by means of (2.1), 
and we obtain

jjd<rw J£*  (E) - £|(Ttt) -Q*( e- Tn-X Te^ -X(Tei -U^ - 

-^ante^E-Tn-XT^-^(E) ^ÿ(Tn) + XVeCrei~ ^<)| •
(3.3)

This is the integral equation which governs the straggling in <p, and it 
corresponds to the equation (2.1) describing Tp itself. Also in a more for
mal respect (3.3) is similar to (2.1). In fact, if the right hand side of (3.3) 
could be neglected, the resulting equation for the quantity would be 
exactly (2.1). Now, the right hand side of (3.3) is a positive source term 
completely determined by the known functions and ç?e. It contains the 
square of a term whose average is zero, being the square of the change 
in in a collision, averaged over the different results of the first collision.

We shall not quote the separate equation for X22e(E), in analogy to
(2.2) or (2.2'), since it would be of type of (3.3) and could be written 
down immediately. Moreover, simplifications in (3.3), corresponding to the 
approximations (A) to (E), are fairly straightforward. We consider explicitly 
only a few cases. Suppose that energy transfers to electrons are small, and 
that nuclear and electronic collisions are separable. This corresponds to 
approximation (D). In the cases where cpe is zero we then get, in analogy to 
(2-7),

«.(£)------ Tn) - &f(E) + SfyTn) } +

+ Jd<,„{?(E-7’n)-ÿ(Ê) + ^(r„)}2.
(3.4)

where also the term (9?'(E))2 Teij is disregarded.

2
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Assume here that Tn in (3.4) is small, i.e. approximation (E). From
(3.4) we obtain, corresponding to the homogeneous part of (2.8),

\Sn+Se}^^E') = + (Tn) - T„(p'(E)}2.
(3-5)

Although (3.5) appears to be simpler than (3.4), we shall lind in § 5 that 
in a straightforward case equ. (3.4) has the advantage of simplicity.

Let us consider for a moment what kind of changes will result in (3.5), 
if approximation (71) is dropped and only (E) and (C) are kept. Then, Tn 
and ^5 7^- are small, but a correlation between electronic and nuclear colli-

i
sions remains. According to (3.3), all cross sections in (3.5) must be replaced 
by moreover the term (<p(Tw) - 7,w<p'(E'))2 on the right changes
into ^(7’w) --^'(E)p7; + 7’eijj > an<I f°r this reason the effect of correla

tions can be distinguished. In this respect (3.5) dillers from the corresponding 
equation (2.8), when*  we also discussed omission of approximation (/)).

Corresponding to the equation (2.3) for çq(E), we shall also discuss the 
straggling in the case of Z1 Z2. The average square straggling in ç?1 is 
denoted as ß®i(E). We consider again the case where cpe does not con
tribute. Using approximation (/)) an equation analogous to (3.4) is obtained

(^) = j(£ - Tn) - (E) + ßj( 7’J) +

\(i<hn\Vi(E-7’w)-^1(E) + ^(7,n)J2, (3-6)

where 92(E) is given by (2.7), 722(E) by (3.4) and p>i(E) by (2.3) in ap
proximation (77), while dcrln is the differential nuclear cross section for col
lisions between the particle 1 and an atom 2. Further, Sle is the electronic 
stopping cross section per atom for the particle 1 passing atoms 2. It is
seen that (3.6) contains (3.4) as a special case. In (3.6), terms of type of 

Tn^ are omitted.

Finally, we apply the approximation (E) to (3.6), i.e.

(^ie + 5m)^ß|>i(ß) = Tn<Pi(E)}2, (3.7) 

where q>, and çq should be given in approximation (E) too. Note that
(3.7) is a differential equation in the variable /22 x, and may be integrated 
readily.
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(3.8)

(3.9)

O

where do'e is the differential cross section for transfer of energy Tei to atomic elec
trons by an electron of energy E. There are further simplifications, if we take into 
account that an electron normally ejects at most one atomic electron in a collision.

2*

The equation states that the probability for the value <p prior to the collision is equal 
to the product of the individual probabilities belonging to ejected particles, when 
averaged over the frequency of occurrence of the different events. There is an inte
gration over all possible ç?-values of the ejected particles, with the condition that 
their sum is equal to the original y-value, as expressed by the <5-function. Thus,
(3.8) assumes independent behaviour of the separate events, i.e. product of P's, 
and additivity of damage effect, i.e. <p = <p' + <p" +

i
Equ. (3.8) determines P(<p,E) and is considered as a known function. If

(3.8) is multiplied by q> and integrated over tp from 0 to oo, equ. (2.1) results.
There is a similar equation for Pe(cp,E). We write it down assuming for sim

plicity that electrons produce no atomic recoils (approximation (A) and equ. (2.2'))

Probability distribution.
We have now studied average quantities, q> (E), described by rather simple 

equations, as well as fluctuations, f22(E), which obey more elaborate equations. These 
are the first two steps in a series development, where successive moments < <pn > 
are calculated. The series development is convenient if the first moments give ade
quate information, since they may be calculated with comparative ease. Often, 
further information is needed. When the value of a series development becomes 
doubtful, a closed equation for the probability distribution itself is much to be pre
ferred. Other approximation methods are then at our disposal.

It is thus of both theoretical and practical interest to study the probability dis
tribution itself. We shall merely formulate the basic equations. Let us then ask for 
the equation analogous to (2.1), where one considers the effect of an incoming 
particle with energy E, and identical with the atoms in the medium. Introduce 
probability distributions P(<p,E) and Pe{tp,E) representing the probabilities that, 
respectively, the particle and an electron having energy E will produce the damage 

effect <p. Therefore, e.g. \ (pPe (yp,E)d<p = 7pe (E) is the average effect produced by
• o

an electron of energy E. The equation governing P(<p,E) is derived in the same 
way as (2.1), making the same assumptions. We find readily

\dan>eP (<P,E) = \dantAd(p'\d(p"d<pjPe (jpj, Tej - Uj) •
• • *0  *0 J ~O

■ P l<p', E - Tn - 2? Tei\ ■ P (<p”, Tn -
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In (3.8) let us assume that electrons do not contribute to the damage effect in 
question, i.e. Pe((p,E) = à (<p). In approximation (I)) we then get, since P(^,0) = 
à (<p),

(3.10)

The bond expressed by the ô-function can be inconvenient. It is natural to in
troduce Laplace transforms of the probability distribution,

P(Å,E) = \d<pP(<p,E)e~Å<P.
•’o

The Laplace transforms are particularly useful because of the additivity of (p. 
From (3.8) we obtain the alternative version

dan>eP(l,E) ~ y^n,eP^,E - Tn-^Tei)P(l,Tn- U)-

‘ fj Pe(Å, 1 ej ~ U -j) ,
i

and if q>e is zero we have Pe (Â,x) = 1.

(3.11)

§ 4. Analytical Approximations in Homogeneous Equation

The first step towards a solution of (2.1), or its simplified versions, is to 
discuss its homogeneous part, i.e. put = 0. Now, it so happens that the 
quantity v(E'), introduced in § 1 and described as the average energy 
transfer to atomic motion, is normally a solution of the homogeneous part 
of equation (2.1), because the energy transfer from electrons to atoms is 
negligible to nearly all purposes. By solving the homogeneous equation, we 
have therefore found one important physical property in slowing-down 
processes. In the following, the normal boundary condition on r(E') is 
v(E)/E -> 1 for /<->(), and thus îÿ(E')/r(h?) vanishes in this limit.

It is necessary to gain some experience concerning solutions of the inte
gral equation. To this end we consider at first analytical solutions using 
simplified approximations to cross sections; this can be of interest partic
ularly at the lower energies. Secondly, in § 5 we solve the integral equa
tions numerically with more accurate cross sections, using electronic com
putations. We are then led to new asymptotic or approximate solutions, 
which may be checked by the numerical and analytical results. The present 
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chapter may therefore be regarded as an exercise preliminary to the more 
precise treatment in § 5.

The simplest results obtain when we suppose that the differential cross 
section don may be approximated by the power law scattering formula (1.3), 
corresponding to a potential proportional to r s. We can then arrive at ana
lytical solutions of the various approximations to the integral equation. 
Let us start from approximation (E), i.e. (2.8). The homogeneous equation
(2.8) for v becomes

(Se + S„)-r(£) (4.1)

where q> has been replaced by v. We introduce (1.3) in (4.1), and multiply 
by S»1 E1_1/s. Differentiating with respect lo E we get a differential equation 
of second order in place of the integral equation (4.1),

(£(E) + 1) E2v" + = o, (4.2)

where £(E) = Se(E) /Sn(E). It is apparent that a differential equation was 
obtained from the original integral equation only because of the simple 
behaviour of the cross section (1.3), where the dependence of dan on E 
could be separated out as a factor.

Corresponding to (1.2) we shall assume that Se<xE112, and since Sn^- 
E1-2/s We get £(E) E2/s~1/2. It then turns out that the solutions of (4.2) 
are hypergeometric functions, of the kind F (a, b; a + b; .r), cf. Erdélyi et 
al. (1953). The complete solution of (4.2) is seen to be 

s + 2
4-s

3s+ 2
4-s ;-«£)) +

1-s
+ c2es -f 2-2s 4-3s

4 —s ’ 4-s
6- 5s
4 —s -£(£)).

(4.3)

where CT and CT are arbitrary constants.
If we ask for the particular solution given by the normal boundary 

condition for v at E = 0, i.e. v(E)/E 1 for E ->0, we obtain CT = 1 , 
CT = 0, if s<4. Note that only for s<4 does the present £(E) tend to zero 
for E ->0, and that this is the proper behaviour of £(E).

If instead of (2.8) we start from the more correct equation (2.7), the cross section
(1.3) is seen to lead to the equation
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C* E
+ (i - J) \ fiVl/s • (?'<£ - n + *"(£)  2’} •

»-o

The integrand on the right is large only for T^E. Making an underestimate of the 
integral (because v" (E) is always negative and increases with E) we then replace 
y-l-i/s by jz-i-i/s jn the integral. This gives the differential equation

This equation differs only little from (4.2), but is an underestimate of v, as com
pared with the precise solution of (2.7) and (1.3). It is interesting that v from (4.2) 
is instead an overestimate of the solution of (2.7) and (1.3); this follows from v' (E) 
being a decreasing function of E. We have thus bracketed the solution of (2.7) 
between two approximate solutions. It turns out that (4.4) is generally a somewhat 
better approximation than (4.2). The solutions of (4.4) are seen to be hypergeometric 
functions, of the type

2s s + 2 (4 + s)a+2s —2 £(E)^
— s)’ (4 —s)’ (4 — s)a ’ a /

/ 2 —2s (2 — s)a +2 —2s (4 — 3s)a +2 —2s f(E)
^(4 — s) a ’ (4 —s)a ’ (4 — s)a ’ a

1 1
where a = - + —— is the coefficient of v" 

2 2 s in the brackets in (4.4). The present solutions

of (4.4) are similar to (4.3), and contain it as special case (a = 1).

Region I. In region I, where 0<£'~£'c, we may select a few suitable values 
of s, and study some of the approximate solutions. In doing this, we obtain 
not only a reasonable estimate of v(E), but also an insight in errors involved 
in some of the simplifications, (A) to (E), of the basic integral equation.

Let us consider the standard case, where s = 2 and Sn = S° is independ
ent of energy, cf. (1.1) and (1.3). We put ^(E) = (E / Ec)1/2, and obtain from 
(4.2) and (4.3), with the boundary condition v(E)/E =1 at E = 0,

V (E) - Ec{- 12 + 6 [1 +2 (Ec/E)112 ]■ log (1 + (E/Ec)1/2)} . (4.5)

representing the solution of (2.8)-i.e. approximation (E) - for power law 
scattering with s = 2. The solution (4.5) can be used only at energies where 
E)EC is somewhat less than unity. This limitation must be made because a 
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decrease sets in in the actual function Sn at an energy somewhat lower than 
Ec, in most cases.

Let us consider in particular the limit of (E/Ec) « 1, where a more gen
eral approach is possible. In fact, in any one of the approximations (D) to 
(E') we get, when s = 2, a power series in (E/E^12

rj(E) = E-v(E) = ^E^E-112-. .. , E«EC, (4.6)

where oq is a constant, the value of which depends on the approximation 
used. We compare four solutions of the case s = 2. Firstly, approximation 
(E) given by (4.5) leads to oq = 1. Secondly, a series development of the 
solutions of the approximation (4.4) leads to ax = 16/13 = 1.23. Thirdly, 
the more correct integral equation (2.7), i.e. approximation (/)), may be 
solved by a series development, leading to oq = 4/(3 %-6) = 1.17. These 
three values for oq give an indication of the accuracy of the various approxi
mations. As expected, (cf. the discussion of (4.4)) the solution (4.5) is an 
overestimate and (4.4) an underestimate of v(E); (4.4) is a somewhat better 
approximation. A fourth case may be mentioned, i.e. approximation (E') 
given by equation (2.8'). It consists in including the next term in the series 
development of v(E - Tn)-v(E), i.e. subtract (1/2) v"(E)\dcrn T2 on the left 
hand side of (4.1). We lind here oq = 8/7 = 1.14, so that approximation (E') 
is superior to (E).

Region II. In this region the function Se remains the same, increasing as 
E1/2. However, Sn begins to decrease and the scattering approaches the 
Rutherford scattering, though with a screening at a distance ~ a. For a 
qualitative orientation we again base our description on (1.3), so that we 
assume that Sn is proportional to a power of E, i.e. E1_2/s. This ap
proach is qualitatively less justified than in region I, but we can learn 
about the possible approximation methods for solving the basic integral 
equation.

Let us suppose that Sn is proportional to E~1/2 for E>E0, so that .s = 
4/3 in (1.3), and J(E) - (Se/S„) - (£/£„). Then, E„- (EOEC)™ is the energy 
at which the two stopping cross sections become equal. Equation (4.2) for 
v now becomes

(4 E3E^1 + 4E2)r" + (5E2Eft1 + E)v'-i7 = 0, (4.7)

with the complete solution (cf. (4.3))
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(4.8)

The solution is determined by the boundary conditions at the energy Eo, 
where we find v and v' from (4.5). Thus, is given by

C\ = ~.r“2+ ^(.r + 1)(.r 2).<3 log (1 +x) 1 - |x +. . . , (4.9)
5 a 5

where .r = EojEb is less than unity for all values of Zx = Z2. The expression 
for C2 is more involved, but C’2<0. This shows that although r(fi') increases 
with E, it remains below the value CT, and it increases only slowly towards 
this limit. In region III, however, it turns out that v will go on increasing 
without an upper limit, although still quite slowly. The behaviour of (4.5) 
in region I and (4.8) in region II is shown by the dashed curve in Fig.s 5 
and 6 for the case of ec = 4.75 (k = 0.15) and .r = 0.56, where it is com
pared with a numerical estimate based on the more accurate scattering 
formula (1.4). It may be noted that the value of C\ is not far from unity, 
and that C2 is small. If we were to put C\ = 1 and C2 = 0, we would instead 
have the solution where s = 4/3, i.e. (4.7), is used down to zero energy, 
and apparently this is satisfactory as a rough estimate.

In region I the solution (4.3) of the equation (4.2) was an application of approx
imation (E) using the cross section (1.3). It might therefore seem that also in region 
II the equations (4.7) and (4.8) are equivalent to approximation (E). However, we 
change from one cross section dan in region I to another in region II. Since (4.2) 
and (4.7) were obtained by differentiation of (4.1), they should be supplemented 
by inhomogeneous terms if the cross section changes at low values of TE. This 
circumstance is disregarded in (4.7), (4.8) and (4.9), giving some deviation from (E).

Straggling in region I. An evaluation of the straggling in v or g, Qy(E) = 
£}Z(E), from (3.3) is more involved than the estimate of v itself. Still, at low 
energies in region I, a series development may be made and the first term 
is readily obtained. If (1.3) is applied, it turns out that the relative straggling 
in g becomes a constant, independent of energy (and atomic number and 
mass) at low energies,

„ £«(£)2 =——----  = const., for £(E)<< 1 • (4.10)
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If we consider the standard case, s = 2 in (1.3) and £ = (FJ/EC)1/2, we 
find at low energies that 7/ is proportional to E3'2, cf. (4.6). We solve (3.5) 
and get o-2 = 1/14. We may also solve directly the more basic integral equation
(3.4) for £?2, which corresponds to equation (2.7) for rj itself. Then we ob
tain cr2 = (3 ti/4) - (23/10) = 0.0562, which is somewhat less than the pre
vious value of a2.

If, instead of the relative straggling, we consider the absolute straggling 
£} we find that (3.5) gives closely the same as (3.4), being only about 4 
percent less than (3.4). The approximation (E) is therefore considerably 
better for the straggling than for the value of the function 7/ itself.

Since f22 is expected to be more accurate than cr2, we quote the value of 
Ï22 obtained in approximation (E), i.e. (3.5), using (1.3)

(4.11)

which shows that the coefficient of (E-£(E))2 only varies from 0.071 to
0.109 when s increases from 2 to 3. The corresponding variation of o2 may 
be found from (4.3) and (4.11).

§ 5. Numerical and Asymptotic Solutions for Zt = Z2

Numerical results.
The analytical solutions in § 4 give merely some guidance in the problem, 

because they are based on the power law scattering, which has quite limited 
applicability. A fairly complete and reasonably accurate solution of the case

= Z2 may be obtained from representative values of the electronic stopp
ing constant, k, together with the universal cross section given by (1.4) and 
Fig. 2. It is convenient to use the e-t variables in (1.4). The electronic 
stopping is then assumed to be (dsjd(7)e = A -e1/2 in regions I and II. The 
homogeneous integral equation for r is

(S• j 2^5 • «'1Z6- J -’0) + ”(3}. (5.1)

where /(/1/2) is shown in Fig. 2. Note that (5.1) is equivalent to approxima
tion (£)).

The integral equation (5.1), with (deldQ)e = A-;12, was solved by numer
ical methods on the electronic computer DASK. Actually, a slight modifi
cation of (5.1) was advantageous in the numerical computations; if gives a 
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slight overestimate of ? as compared to (5.1), and should be accurate within 
a few percent. When starting the solutions at small values of e, the asymp
totic behaviour of the cross section (1.4) was assumed to be /(æ) x x1'3, cor
responding to power law scattering with s = 3. We could here use the ana-

■yCe.)

/ Â
2 Æ

“ 0.2o

« o. /s

3 Jc ■ Q fo

// /
/ /

//

f /

'S
5 fo~* fo~z fo~t / fo

Fig. 3. The function ^(e) vs. e at low values of e, for Z, = Z2 and in the three cases k = 0.10, 0.15 
and 0.20. The curves were computed numerically from (5.1).

lytical estimates in § 4. In the following, solutions are presented for k = 
0.10, 0.15 and 0.20, which covers the range of variation of k for Z1 = Z2.

The results of the coded computations of r(e) from (5.1), i.e. approxi
mation (jD), are shown in Fig.s 3 and 4 for the above three values of k. 
Fig. 3 represents low values of the energy variable e. In this region it is 
preferable to give the function ï)(e) = e —v(e), because v(e) is nearly equal 
to £. Fig. 4 is a continuation of the curves up to e = 100. The function F(e)
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Fig. 4. The functions (c) vs. s for 0<e<100. The figure gives the continuation 

of the three solutions in Fig. 3.

increases initially as e, but remains small compared to e when e is large. 
In region II, i.e. when (de/dQ)e = k • e1I2,v(e) has an upper limit, as discussed 
below.

As a preliminary to the above calculations we made numerical calcu
lations by hand in approximation (E), i.e. based on the homogeneous part 
of (2.8). It seems of interest to compare the two approximations. This is 
done in Fig.s 5 and 6, in the case of k = 0.15. The full-drawn curve in 
Fig. 5 is the accurate solution of (5.1). The dashed line is the analytical 
solution (4.5) for power law scattering, with s = 2. At e = 4.75 this solution 
is continued by (4.8), corresponding to s = 4/3, cf. text in § 4. The accuracy 
of the power law solutions is seen to be moderate. Similarly, Fig. 6 shows 
r(e) for e<10(), in three approximations. The solid curve is the solution of 
(5.1). The analytical solution (4.8), for power law scattering with s = 4/3, 
is continued from Fig. 5, and shown by the dashed curve. This analytical 
solution is seen to become increasingly poor for large e. The stipled curve 
represents the abovementioned computation by hand in approximation (E).
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As expected, (E) is an overestimate of v, by about 10 percent for high values 
of e; this may be a tolerable accuracy for several purposes.

The average square fluctuation in v, /22(e), may be computed from 
i.e. approximation (D). In the coded computation we use £ - t vari-
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Comparison of approximations for Z, = Z2, k — 0.15 Curves show
of £. Thick solid curve is solution of (5.1), like Fig. 3. Dashed line is power law formula
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ables as in (5.1), and with / (/1/2) given by Fig. 2. The equation contains 
inhomogeneous terms which may be computed from v(e) in Fig.s 3 and 4. 
At e = 0 the solutions were started from the analytical approximations in 
§ 4, with ,s = 3. The results are shown in Fig. 7, for the three values of Å' 
used above, and relatively large values of £. The figure gives Q2fv2, the 
average square fluctuation divided by 72, and the resulting curves are seen 
to lie remarkably close to each other. It is instructive to compare various
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Fig. 6. Comparison of approximations for Zj = Z2, k = 0.15. Curves show v(e) vs. e for e< 100.
The solid curve is solution of (5.1). Dashed curve is (4.8) continued from Fig. 5, corresponding 

to power law s = 4/3. Stipled curve was computed by hand in approximation (E).
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Fig. 7. Relative average square fluctuation in v, Q2/v2, for k = 0.10, 0.15 and 0.20. Coded com
putations in approximation (£)).
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puted numerically in approximation (Z>), stipled curves in approximation (E).

approximations, as seen in Fig. 8 for k = 0.15. The solid curves represent 
approximation (7)), as in Fig. 7. The stipled curves were computed by hand 
in approximation (E). The horizontal dashed line shows the point (,s = 3), 
from which 722/??2 in approximation (E) was started at e = 0. The difference 
between 722/7j2 in approximations (/)) and (E) is quite large, and here the 
errors in rj and in £?2 seem to add, at low £-values. We believe that the accu
racy in £?2, at low values of e, is not quite satisfactory in any of the ap
proximations used.

One important reservation should be made as regards the above com
putations of v and < (v -v)2 > = -Q2. Apart from their definition as averages 
in the probability distribution P(v), these two quantities acquire a simple 
meaning if P(v) is approximately Gaussian, i. e. P~ C ■ exp (v-v)2/2 722}. 
However, sometimes the deviations from a Gaussian are noticeable. The 
probability distribution then has an asymmetric peak, with a most probable 
value v*  slightly smaller than v, and with a width at half maximum which 
may be considerably smaller than for the above Gaussian. There is also a 
tail towards high v-values, decreasing with a power of v of about - 2 to 
-2.5, and having a cut-otT at some high v-value. Examples of this kind 
were studied in a recent paper (Lindhard and Nielsen (1962)). In any 
case, it depends on the experiment performed whether one may use the 
average values v and k?2, or take recourse to the probability distribution. 
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In a particle detector, where damage events due to single particles are re
corded individually, one should normally consider the probability distribu
tion. However, if many events are recorded together, like the damage by 
thousands of particles in a solid, the events collect into a Gaussian distribu
tion, with average value N-v, and an average square fluctuation N-Q2, 
where N is the number of particles.

If the electronic stopping continued to rise as A-£1/2, (region II), there 
would be an upper limit to v(e). In the cases shown in Fig. 4 this upper 
bound may be obtained from (5.3); for k = 0.15 this leads to v<7.8. How
ever, at an energy £t~ IO3 the electronic stopping has a maximum and 
starts decreasing, so that approximately Se/Sn tends to a constant ~ IO3. 
Thus, in region III there is strictly no upper bound on v, but its increase 
is extremely slow. We did not continue the coded computations into region 
III, partly because a new stopping parameter would be required, and partly 
because simple asymptotic equations take over, long before region III is 
reached.
Asymptotic equations.

Let us first consider a semi-empirical approximation to v, which may be 
found from the numerical curves. In fact, from Fig. 4 it is seen that for large 
£ the function v is nearly reversely proportional to k, i.e. to the electronic 
stopping. This result cannot hold for £<1, where v^e. However, in this 
limit we found in § 4 that 77 = £-r is proportional to k, because the elec
tronic stopping is small and a series development may be made of the 
function ïj in powers of A. A simple comprehensive formula joining the 
two results v~^1(£)A_1 and v~e — kg2(k), is

’(6) l+bjtø’ (5.2)

where g(k) -> 0 for e ->0, and g(e) -> £ in region II. On the basis of the 
curves in Fig.s 3 and 4, we have estimated g(e) as shown in Fig. 9. It ap
pears that (5.2) with Fig. 9 reproduces v(s) within an accuracy of some 
percent, for all values of £ in regions I and II, and for the A-values of in
terest when Zr = Z2.

A convenient approximation, valid for large £, may be mentioned in 
connection with the numerical estimates. We note that for high energies E 
the differential cross section (1.4), as shown in Fig. 2, will be equal to the 
Rutherford cross section, doR, except when T < (E2/E) ->0. If therefore 
we integrate a function of T, tending to zero as T, we may replace (1.4)
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by the Rutherford cross section, integrated from the lower boundary 7’ =

where the constant Â is determined by \ 77/a = \ TdaR. We might
•’0 hvE

make this replacement in the accurate equation (2.7), but for the present 
purpose (4.1) is accurate enough. Since v(T) increases slowly at high T- 
values, we can replace the upper limit E by °° in the integral in (4.1) and 
find, expressed in the e-t variables, 

(5.3)

where t0 = 0.60, and C is a constant.
The formula (5.3) is a useful and rather accurate approximation, pro

vided e is larger than ~ 10. It may be readily integrated, without recourse 
to complicated coded computations. If we start using (5.3) at an energy 62. 
we may for instance fit r(e2) an(i v' (e2), the latter determining the constant 
C. We may normally disregard (dE/dQ)n and write de/dp = (de/dp),,. In 
region II we put (de/dQ)e = k-el/2, and in this case (5.3) leads to an upper 
bound for r(e), as mentioned on p. 31. We note furthermore that according 
to (5.3) the increase of v(e) is proportional to k1, in agreement with (5.2).

An equation similar to (5.3) may be derived for the average straggling 
£?2(e). For this purpose we consider equ. (3.4). Since the integrand on the 
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right tends to zero as 7’2 or faster, we may directly put da = daR for high 
energies and integrate from 0 to E, because the integral converges rapidly 
at T = 0. We may also simplify the right hand side, since clearly r(T) 
is the dominating term for small or moderate T, where the differential 
cross section is large. Because v2(T) saturates we then have the simple 
limiting approximation

(5-4)
Vo

We observe that the right hand side of (5.4), ^(e), tends to a constant for 
large e. The magnitude of v>(e) may be estimated roughly by putting (cf. 
(5.2)) v(x’) = .r-(l +/cr)1, leading to y(e) = v(e)-4 1 -> A-_14_1. Now, in re
gion II we then obtain (d/22/de) 2: ?(e)4_1 •Ar_1e'_3/2, leading us to expect 
that for large e the function £?2 is proportional to Å“2. Actually, this result 
fairly well corresponds to the curves in Fig. 8. In the opposite limit of low 
E-values we have found that £?2 /<2.

§ 6. Outline of Treatment for Z2

From the previous discussion it appears that the most direct connec
tion between experiments and theory may be achieved in the case of Zx = Z2. 
Unfortunately, there are as yet no measurements of this kind.

A brief treatment may now be given of more involved cases. We con
sider problems where the incoming particle does not belong to the medium, 
but the medium still contains only one atomic species ; we write briefly 
Zx Z2. As we shall see, our previous division into three energy regions 
can no longer be upheld. At the lowest energies the description remains 
comparatively simple, and experiments are available for comparison with 
theory.

We shall not consider cases where the medium contains more than one 
element. The formulation of accurate general solutions can here become 
quite complicated, but solutions of special cases may be worked out numer
ically. Several measurements are available.

Consider then an incoming particle with atomic number Z1 different 
from Z2. We assume that the case of Zx = Z2 is already solved, as described 
in the preceding paragraphs, and the corresponding solution for the energy 
given to atomic motion is v(E'). The unknown function for the case Zx =/= Z2 
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is denoted as v1(E). The integral equation for vi is obtained from (2.3), 
where we introduce approximation (D),

^(E)-Su - Jda, {?,(£-T)-^(£> + 5(7)}. (6.1)

Here, Sle is the electronic stopping cross section for the ion Zx in the medium 
Z2, and is the differential cross section for an elastic nuclear collision 
between an ion Zi and an atom Z2, with corresponding stopping cross sec
tion Sln.

In (6.1) enters v(7’), where T<Tm = yE; y = 4 MiM2/(Mi + M2)2. Our pre
vious division into three regions was characterized by the energies Ec and Ei, 
belonging to the atoms Z2. Putting Ec and Ei equal to the maximum recoil energy 
7\„ we obtain for the particle Zi two characteristic energies E2C = V~YEC and 
E21 = y-^Ei. However, the stopping cross sections STe and Si7( for the particle 
Zi give rise to a further subdivision. In fact, at energies lower than E\c we may 
assume that Sie/Sira increases slowly, with a power of E between 1/2 and 1/6. 
At the energy E\c the ratio Sie/Sira is comparable to 1. Next, above E\c there is 
a decrease in Sin while Sie continues to rise as E1!2 until the energy En is attained. 
For still higher energies S\e decreases and the ratio Sie/Si» increases towards a 
constant —103. Formally at least, we might then distinguish between five energy 
regions, separated by the energies E20 E\c, E21 and En.

We limit the discussion to the lowest energy region. It is bounded upwards by 
either E±c or E2c- Approximate values of these energies are Eic ä A3(A 1+A2)_2 
Z4/3ZY1/3-500 eV, and E2c S (Ai + A2)2 • A71 Z2 • 125 eV. When Zj»Z2, Eic will 
be larger than E2c, while for Z2»Zi the energy E2c becomes considerably larger 
than Eic. For Z\ = Z2 the two energies are of course equally large.

Assume now that the energy is below E\c and E2C- We may then make the 
same approximation as in § 4 in region I. As an example we consider the standard 
case s = 2, leading to energy independent nuclear stopping cross sections, so that 
S'le/Sin = (E/Eic)1/2 and SeISn = (EIEc)rl2. Forv(E) we can then apply approxima
tion (4.6) with ai = 1. The corresponding series development may be made in 
(6.1), i.e. in approximation (E). Using the expression (1.3) for da we obtain

7/1 = E-ri = AE3/3, for E<E1C, E2c, (6.2)

where A = | {#ic1/2+^71/2£71/2} •

Next, we determine the straggling ß2 in zq . With the same low energy approx
imation as in (4.10), we apply (3.5). Like in (4.10) the relative straggling in rji be
comes a constant,

1 (/ vl/2 7\2 7)
ß2(E>2(E) = +f6|, E<E1C, E2c. (6.3)

The method actually used by us in solving equ. (6.1) is the following 
one. We introduce the e-Q-t variables described in § 1, and consider 
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those regions where electronic stopping cross sections are proportional to 
e1/2. The problem then contains two empirical constants, k and klt i.e. 
the proportionality factors in electronic stopping for particles Z2 in Z2 and 
Z} in Z2, respectively. The values of k and kx are estimated in (1.2). Two 
further parameters enter, one being the mass factor, y = 4 M1M2/(M1 + M2f, 
and the other the ratio, z, between the «-units for the particle pairs (Zlt Z2) 
and (Z2, Z2). The solutions are then of type of iq = jq(e; k, k1; À, y) and 
£?2 = £?2(e; k, k±; 2, y). A programme was coded for electronic computa
tion on this basis, and solutions have been obtained in a number of cases. 
Three sets of solutions of this kind are quoted below. Other solutions were 
utilized in a recent paper on damage in Si (Denney et al. (1962)).

The numerical solutions should be regarded with some reservation, and 
they are of limited applicability. Firstly, they apply only at the low energies 
where electronic stopping cross sections are proportional to e1/2. This can 
be remedied by continuing the solutions by means of asymptotic equations 
similar to (5.3) and (5.4), cf. (6.6). Secondly, the connection to an actual 
measurement is rather longwinded and uncertain. The usefulness of the 
average quantities iq and £?2 can differ much from one set of (Z1? Z2) to 
another. In any case, the three examples in the following may illustrate 
some of the difficulties.
Ionization efficiency.

One important experimental observation is the number of ion pairs Nt 
produced by a certain incoming particle; in a solid state detector we let 
Nt represent the number of electron-hole pairs. We shall not discuss the 
detailed mechanism by which electrons create ion pairs, but only note that 
the energy per ion pair, Wß = Electron/M*  approximately constant for 
swift electrons.*  In the present case of an arbitrary incoming particle it is 
therefore natural to consider the total energy given to electronic motion, 
and expect that the average number of ions is approximately given by the 
relation

Evidently, if fluctuates, Nt should fluctuate proportionally. An average 
square fluctuation in rj, ß2(£'), must therefore contribute to the average 
square fluctuation, (d A^)2, in Ni by the amount

(dN,)| - (6.5)
* Experimental and theoretical discussions of W-values for electrons and a-particles are 

given in recent papers by Jesse (1961) and Platzman (1961). The deviations of Wa/W^ from 
unity in polyatomic gases indicate one limitation in the accuracy of (6.4).

3*
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Fig. 10. Curves for vl (E) and (£,’) for a-particles in Si. Solid curves correspond to the coded 
computations. Dashed curves include corrections for decrease in electronic stopping, cf. (6.6).

but this is not the only cause of fluctuation of Nt. A direct statistical effect 
in ion pair production is that considered by Fano (1947), where the average 
square fluctuation was found to be (ANi)p = F-Ni, with F<0.5, i.e. in 
some respects similar to a Poisson distribution. In many cases the fluctua
tion (6.5) dominates over the Fano effect.

In a treatment more precise than (6.4) and (6.5) one would introduce Ni directly 
as the variable ÿ in the basic integral equations. In fact, the basic case in production 
of ion pairs is an electron passing through a medium, and one must at first solve 
(2.2') for ^e(F) = Nie(E), i.e. the average number of ion pairs produced by an 
electron of energy E. Next, (2.1) is solved (Zi = Z2) with respect to Nt(E), Nie(E) 
being a source term. Thirdly, equ. (2.3) for Nn(E) is solved. The Fano fluctuation 
is an estimate of the fluctuation in the first step only.

a-particles in Si.
Our first example of numerical computations illustrates the ionization 

by charged particles in a detector. We consider a-particles in Si, i.e. a 
solid state detector, but the results are quite similar to those for a-particles 
in A. In Fig. 10, the full-drawn curves show the behaviour of î'i(jE') and 
Q1(E), as obtained from the coded computations mentioned above. Now, 
electronic stopping for a-particles in Si is proportional to velocity only up 
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to about 0.7 MeV, where a maximum obtains, upon which the stopping 
decreases as ~ z?“1. The full-drawn curves in Fig. 10 are therefore under
estimates at energies above 1 MeV. A correction can be made rather easily, 
since v(E) for Si ions in Si at the energies in question is given in e.g. Fig. 
6, or by (5.1), so that the asymptotic equation is

where the right hand side is known, and /o = 0.60. A similar treatment 
may be made for ßj(e). In this manner the two dashed curves were ob
tained for ï>i(E) and f21(E) in Fig. 10. By means of (6.4) and (6.5) may be 
found the resulting effects on signal size, Nt, and on signal fluctuation, 
d N? . However, the fluctuation is so large that the distribution in must 
differ considerably from a Gaussian. The quantities iq and are then 
less relevant than the most probable value of v1( the width at half peak 
height, and the shape of the tail in the probability distribution. In a recent 
note (Lindhard and Nielsen (1962)) the latter quantities are obtained by 
a method much simpler than the above one.

Ionization by a-recoils.
The recoil nucleus in a-decay is a very heavy particle with an energy 

of only 100—200 keV. In this case 7ÿ1(E) « E, and a conspicuous effect 
should be observed in the number of ion pairs, according to (6.4); Detailed 
measurements have been made by B. Madsen (1945), for Po, ThC and 
ThC' a-recoils. In argon containing about 5 percent air, Madsen observed 
the average number of ion pairs, Nt, and also the width of the distribu
tions.

The corresponding coded computations of v1(E) and &i(E) for a heavy 
recoil particle in pure argon have been performed. The three recoil nuclei 
have practically the same atomic number, and differ only in energy. The 
resulting behaviour of rji(E)/Wß is shown by the full-drawn curve in Fig. 
11. In the figure is also shown the result, if power law scattering with s = 2 
is assumed, as indicated by the dashed line. The three experimental points 
of Madsen are his values for Nt, assuming Wa = Wß = 26.4 eV, the energy 
per ion pair in pure argon. The points lie below the solid curve and, 
in view of the uncertainties, the agreement must be said to be satisfactory. 
From Madsen’s curves the mean square relative fluctuation, , may
be estimated roughly. It is of order of ZlAf/Af ~ 0.02. This is considerably
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Fig. 11. Comparison with three a-recoil measurements by B. Madsen. Solid curve is (E)/Wß 
computed numerically. Dashed curve corresponds to the power law approximation (6.3). Com

parison assumes Wa=Wß, but magnitude of this constant is not important.

larger than the numerically computed average square straggling, Ql/rfi ~ 
0.002, but in approximate agreement with (6.3), i.e. s = 2. The latter is 
possibly fortuitous, and further measurements in the region of extremely 
low velocities are desirable.

Ionization by fission fragments.
As a third example we may consider the ionization by fission fragments 

in various gases. The question of the ionization efficiency of fission frag
ments was studied experimentally by Schmitt and Leachman (1956), cf. 
also Utterback and Miller (1959). Schmitt and Leachman observed the 
variation of the number of ions, Nt, with fragment energy in several gases. 
It turned out that Nt was not quite proportional to the energy of the frag
ment. They therefore considered the difference between E and the energy 
Ea = Wa'Ni(E), where is the energy per ion pair for natural
a-particles. This difference, A = E-'WaEli, was called the ionization defect. 
Now, if (6.4) holds very accurately, and if Wa = Wß, it is apparent that A 
becomes equal to the present function ^(E). However, since the observed 
A’s are only some 5 percent of E, and since in some cases already VVa can 
deviate from Wß by several percent, it is abundantly clear that a comparison 
between A and v1 is only qualitative, as long as the excitation and ionization 
cross sections for fission fragments have not been studied in detail.
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The coded computations of ïq and were carried through for fission 
fragments in a number of substances, taking one representative of the median 
light group = 39, Ax = 94.7, Elnitlai = 98.9 MeV), and one representative 
of the median heavy group (Z± = 53, Ax = 138.8, Einitial = 66.9 MeV). 
Several results of this kind are given in a recent paper (Lindhard and 
Thomsen (1962)). Results are quoted in Table 1 for the two groups of fission 
fragments with initial velocities in Ne and A, as compared with the observa
tions of A by Schmitt and Leachman. There is quantitative agreement, 
and more could hardly be expected. It is seen that is systematically 
smaller than A, which is not surprising since the value to be used for W 
may be greater than VVa.

Table 1
Ne A

A (MeV) (MeV) A (MeV) Vi(MeV)

Heavy group........... • 4.8 ±0.7 2.5 5.5 ±0.5 3.1
Light group .............. 4.3 ±1.0 1.6 5.1 ±0.8 2.0

Fluctuations have not been studied experimentally. As examples of the 
numerical computations it may be mentioned that for the heavy fission 
fragment group with initial velocities in Ne and A the values of Æj/iq are 
0.066 and 0.097, respectively.

In an interesting theoretical treatment of the ionization yields of fission 
fragments Knipp and Ling (1951) have used a differential-integral equation 
for the average ionization of similar type as (E) in the present paper. More
over, they introduced the description by ionization defect A employed by 
Schmitt and Leachman. The estimates of atomic collision cross sections by 
Knipp and Ling were necessarily somewhat uncertain. They considered the 
case of fission fragments in argon. For argon in argon their maximum 
ionization defect A was 780 keV, while our upper bound on v1 in region II 
(cf. p. 31) gives 600 keV for argon in argon. For the two fission groups in 
argon their estimates of A are also somewhat larger than our values of v1. 
Knipp and Ling made use of the connection to Madsen’s measurements.

Production of lattice defects.
In the present context mention should be made of the damage produced 

in a crystal lattice by irradiation. A general survey of radiation damage in 
solids is given by Billington and Crawford (1961). Consider a solid 
composed of one element only. We may let <p represent e.g. the number 
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of vacancies Nv produced by a particle with Zi = Z2. The discussion below 
applies just as well for the production of other lattice defects. In first approx
imation Nv should be proportional to the energy given to atomic motion, v. 
The average value of Nv is therefore expected to obey an equation similar 
to (6.4)

where Uv may be regarded as an empirical constant. The relation (6.7) 
probably affords a more direct experimental check of the present results 
for v and rj than does equ. (6.4). The reason is that in most cases v« E and 
r[ E, as in the ionization efficiency of fission fragments.

Uv can also be estimated theoretically from (2.5), i. e. approximation 
(B“1), valid at low energies where no energy ends up in electronic motion. 
Having derived a constant Uv at such low energies, we have also justified 
the use of (6.7) at higher particle energies.

Several estimates have been made of the connection between Uv and 
atomic binding (Snyder and Neufeld (1955, 1956) and others, cf. Seitz 
and Koehler (1956), Billington and Crawford (1961)). It has become 
customary to use hard sphere ion-atom scattering, i.e. dan= const. dT. 
Our present cross sections in § 1 are much more forward peaked and lead 
to a higher value of the ratio between Uv and atomic binding.

The fluctuation in Nv, (d Nv)2, has a contribution from the fluctuation 
in v. We find analogously to (6.5), (d Nv)^ = Ï22(E)/U2. The magnitude of 
the relative fluctuation in Nv may be read off directly from the curves in 
Fig. 7, for Zx = Z2.

In approximation (IE1), and with hard sphere ion-atom scattering, Leib- 
fried (1958) has derived a fluctuation in Nv, (d NV)2L = 0.15 Nv, analogous to 
the Fano ionization fluctuations. Already at quite low energies the fluctuation 
of Leibfried is completely overshadowed by the present fluctuations.

The above relations, together with our previous computations of v(E) 
and f22(E), cover the question of Nv and its fluctuation for Z1 = Z2. If 
Zx =# Z2 some cases are represented by the examples in this section, and 
others by Lindhard and Thomsen (1962). An interesting further example 
is the damage produced by neutrons, where the production spectrum of 
recoils by neutrons, times r(B) from § 5, may be integrated to give the 
production of lattice defects.

Finally, it should again be emphasized that (6.7) is an approximation. 
If necessary, more accurate treatments may be made. Thus, let us consider 
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the behaviour of NV(E) at high particle energies. Here, an increasing frac
tion of the energy transfers to atoms are so small in magnitude that lattice 
bindings need not be disrupted. In fact, the logarithmic increase of the right 
hand side of (5.3) for increasing e is due to such small energy transfers. 
In the evaluation of Nv we may therefore at a sufficiently high energy re
place loge by a constant, but this does not result in a large correction.

In conclusion we wish to express our deep gratitude to all who have encouraged 
us and assisted in this work. Miss Susann Toldi has given untiring assistance in 
the preparation of the manuscript.

Institute of Physics, 
University of Aarhus.

Note added in proof. In a recently published article by Abroyan and Zborovskii 
(Soviet Physics Doklady, 7,417 (1962)) the ionization pulse by potassium ions in a germa
nium detector is measured at ion energies ~ 1 keV. The authors find that the ratio ß between 
the pulse for K ions and for electrons with the same energy is ß = 0.032, 0.071, 0.114 and 
0.135, for E = 0.5, 1,3 and 8 keV, respectively. Now ß should be equal to rßE, and the simpli
fied theoretical formula (6.2) gives (jßE) = 0.051 E112, where E is measured in keV. This is 
in excellent agreement with the experimental values of ß. However, numerical estimates 
corresponding to (5.2) are nearly a factor of 2 higher. In view of the smallness of ß the 
results are promising in any case.
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